Les solvants chlorés (chlorure de méthyle, chlorure de méthylène, chloroforme, tétrachlorure de carbone, trichloréthylène, perchloréthylène, trichloro-1,1,1 éthane) forment une famille de composés, ayant des propriétés voisines. A part le chlorure de méthyle qui est, à la température ambiante, gazeux, les autres sont liquides. A part le chlorure de méthyle, ils sont, dans les conditions normales d’utilisation, ininflammables. Ce sont des produits qui possèdent un excellent pouvoir solvant, qui dissolvent et sèchent rapidement et qui sont récupérables par distillation. Ils présentent l’inconvénient d’être parfois toxiques ou néfastes pour l’environnement ce qui limite souvent leur utilisation à des applications industrielles.
Le principal solvant employé est l’eau qui est de plus en plus utilisée dans de nombreux secteurs industriels, par exemple celui des peintures ou en association avec des lessives et des tensioactifs dans le dégraissage des métaux, en remplacement d’autres solvants. La consommation mondiale de solvants, autres que l’eau, est, en 2012, au 2/3 de solvants oxygénés, à 25 % d’hydrocarbures et 5 % de solvants chlorés.
Parmi les solvants oxygénés, les alcools (éthanol, n-butanol, isopropanol, méthanol…) représentent 30 % de la consommation avec, en 2013, 6,5 millions de t. Les autres solvants oxygénés sont les esters (acétates d’éthyle, de butyle, d’isobutyle, de propyle, d’isopropyle…), les cétones (acétone, méthyléthylcétone, cyclohexanone…), les éthers de glycol (acétate de 1-méthoxy-2-propanol, 1-méthoxy-2-propanol…), les éthers (tétrahydrofurane, éther diéthylique …)…
Les solvants hydrocarbonés sont aliphatiques (white-spirit, essences de pétrole, naphtas, isopentane…) ou aromatiques (xylènes, coupes aromatiques, toluène, éthylbenzène…).
Productions : en 2020, la production mondiale de solvants, autres que l’eau, est de 28,5 millions de t.
Consommations : en 2012, sur un total de 28 millions de t :
Chine | 9 000 | Autres pays asiatiques | 4 000 | |
Europe | 6 000 | Japon | 2 000 | |
États-Unis | 4 600 |
Source : IHS
Dans l’Union européenne, en 2010, la consommation de solvants est de 5 millions de t dont, en 2008, celle de solvants hydrocarbonés est de 2,3 millions de t, celle de solvants oxygénés, de 1,6 million de t et celle de solvants chlorés, de 154 000 t.
Secteurs d’utilisation : dans le monde, en 2011.
Le principal est celui des peintures et revêtements avec 61 % des utilisations suivi par les encres d’imprimerie, avec 8 % puis les cosmétiques, les adhésifs, le dégraissage des métaux, les caoutchoucs et polymères, l’extraction pétrolière…
Les peintures utilisent à 50 % des hydrocarbures, les adhésifs des hydrocarbures ou des solvants oxygénés, le dégraissage principalement des solvants chlorés.
Quelques utilisations :
Ils forment une famille de composés, ayant des propriétés voisines. A part le chlorure de méthyle qui est, à la température ambiante, gazeux, les autres sont liquides. A part le chlorure de méthyle, ils sont, dans les conditions normales d’utilisation, ininflammables. Ce sont des produits qui possèdent un excellent pouvoir solvant, qui dissolvent et sèchent rapidement et qui sont récupérables par distillation. Ils présentent l’inconvénient d’être parfois toxiques ou néfastes pour l’environnement ce qui limite souvent leur utilisation à des applications industrielles.
Dérivés du méthane : chlorométhanes.
Dérivés de l’éthylène :
Dérivé de l’éthane :
|
Nom UICPA | Formule chimique | Température d’ébullition (°C) |
Chlorure de méthyle | Chlorométhane | CH3Cl | – 24 |
Chlorure de méthylène | Dichlorométhane | CH2Cl2 | 40,1 |
Chloroforme | Trichlorométhane | CHCl3 | 61 |
Tétrachlorure de carbone | Tétrachlorométhane | CCl4 | 76 |
Trichloréthylène | 1,1,2-trichloroéthène | ClHC=CCl2 | 86,7 |
Perchloréthylène | Tétrachloroéthène | Cl2C=CCl2 | 121,2 |
Trichloro-1,1,1 éthane | 1,1,1-trichloroéthane | H3C-CCl3 | 73,8 |
Parmi ces composés chlorés seulement les produits suivants sont, en 2020, utilisés comme solvants industriels :
Les autres ne sont plus utilisés comme solvants mais comme intermédiaires chimiques.
Ils sont produits par synthèse industrielle.
Par ailleurs, le chlorure de méthyle est produit naturellement par des algues marines et la décomposition du bois. Les quantités produites ainsi sont, dans le monde, considérables : de 3 à 8 millions de t/an.
Ils peuvent être préparés directement par chloration du méthane, c’est le procédé le plus ancien qui représentait, en 2004, 15 % de la production, ou à partir du méthanol. Le tétrachlorure de carbone peut être aussi obtenu lors de la fabrication du perchloréthylène (voir ce produit).
Chloration directe du méthane : les réactions de chloration ont lieu vers 470-490°C sous 10 à 12 bar et donnent un mélange des 4 chlorométhanes et de chlorure d’hydrogène.
CH4 + Cl2 = CH3Cl + HCl
CH3Cl + Cl2 = CH2Cl2 + HCl
CH2Cl2 + Cl2 = CHCl3 + HCl
CHCl3 + Cl2 = CCl4 + HCl
Le chlorure d’hydrogène est éliminé par dissolution dans l’eau. Les différents chlorométhanes sont séparés par distillation. Ce procédé est utilisé, en France, par Inovyn à Tavaux (39), avec une capacité de production de chlorométhanes de 70 000 t/an. Par ailleurs Inovyn produit des chlorométhanes à Rosignano, en Italie avec une capacité de production de 30 000 t/an.
A partir du méthanol selon la réaction :
CH3OH + HCl = CH3Cl + H2O
La réaction a lieu, soit en phase liquide, entre 150 et 180°C, en autoclave sous 3 à 5 bar, dans CH3OH liquide, en présence de catalyseur (ZnCl2), soit en phase gazeuse sur de l’alumine activée. CH3Cl gazeux, en présence de HCl en excès, est neutralisé par NaOH, séché avec H2SO4 puis comprimé et liquéfié. HCl utilisé est récupéré, en général, lors de la chloration de CH3Cl, entre 400 et 500°C, pour l’obtention des autres chlorométhanes selon les réactions :
CH3Cl + Cl2 = CH2Cl2 + HCl
CH2Cl2 + Cl2 = CHCl3 + HCl
CHCl3 + Cl2 = CCl4 + HCl
Les divers chlorométhanes sont ensuite séparés par distillation.
Ce procédé, à partir du méthanol, présente l’avantage de consommer une partie du HCl produit et est utilisé par les unités les plus récentes. Arkema produit du chlorure de méthyle selon ce procédé à Jarrie (38), avec une capacité de production de 55 000 t/an ainsi que KemOne qui produit l’ensemble des chlorométhanes à Lavéra (13), avec une capacité de production de 130 000 t/an. Olin utilise également ce procédé dans son usine de Stade, en Allemagne.
Plusieurs procédés sont utilisés.
CHCl2-CHCl2 = C2HCl3 + HCl
2 ClH2C-CH2Cl + 5 Cl2 = ClHC=CCl2 + Cl2C=CCl2 + 7 HCl
2 ClH2C-CH2Cl + 3 HCl + 5/2 O2 = ClHC=CCl2 + Cl2C=CCl2 + 5 H2O
Plusieurs procédés sont exploités.
ClH2C-CH2Cl + 3 Cl2 = Cl2C=CCl2 + 4 HCl
ClH2C-CH2Cl + 2 HCl + 3/2 O2 = Cl2C=CCl2 + 3 H2O
Deux procédés à partir du 1,2-dichloroéthane (CH2Cl-CH2Cl).
CH2=CCl2 + HCl = CCl3-CH3
En France, Arkema à Saint-Auban (04) utilise ce procédé avec une capacité de production de 50 000 t/an, les produits formés n’étant employés, depuis début 1996, que comme matières premières, principalement dans la fabrication des HCFC 141 et 142b. Le trichloro-1,1,1 éthane formé est expédié à l’usine de Pierre-Bénite (69) du groupe afin de synthétiser des gaz fluorés et du polyfluorure de vinylidène.
Le trichloréthylène et le perchloréthylène sont susceptibles de se décomposer lors de leur utilisation.
Non stabilisés, en présence de dioxygène et de lumière, ils s’oxydent (oxydation photochimique) en donnant, en particulier, du phosgène (COCl2) et du chlorure d’hydrogène. La stabilisation est assurée par des amines (triéthylamine…) associées ou non à des antioxydants (phénols substitués…).
Chlorométhanes : en 2014.
Nombre d’usines | Capacité annuelle de production | Production | |
Chine | 16 | 2 150 | 1 450 |
Europe | 6 | 660 | 500 |
États-Unis | 3 | 420 | 380 |
Inde | 4 | 210 | 195 |
Japon | 3 | 185 | 140 |
Russie | 3 | 80 | 60 |
Corée du Sud | 1 | 80 | 60 |
Total | 35 | 3 785 | 2 785 |
Sources : Nolan Sherry & Associate et EMPA, SPARC Workshop, octobre 2015
Productions par produit : voir les produits correspondants : chlorure de méthyle, chlorure de méthylène, chloroforme, tétrachlorure de carbone, trichloréthylène, perchloréthylène, trichloro-1,1,1 éthane.
Principaux producteurs :
En Chine :
Dans l’Union européenne :
Aux États-Unis :
La production de chlorure de méthyle est assurée principalement par les producteurs de silicones :
La production de l’ensemble des solvants chlorés est réalisée par :
En Inde :
Au Japon :
Productions :
Les productions des autres produits sont confidentielles.
Producteurs :
Commerce extérieur : voir pour les différents produits : chlorure de méthyle, chlorure de méthylène, chloroforme, tétrachlorure de carbone, trichloréthylène, perchloréthylène, trichloro-1,1,1 éthane.
Consommation de solvants chlorés : au cours des dernières décennies, les consommations de solvants chlorés ont fortement diminué.
Consommations par produits : voir les produits correspondants : chlorure de méthyle, chlorure de méthylène, chloroforme, tétrachlorure de carbone, trichloréthylène, perchloréthylène, trichloro-1,1,1 éthane.
Secteurs d’utilisation par produit : voir les produits correspondants : chlorure de méthyle, chlorure de méthylène, chloroforme, tétrachlorure de carbone, trichloréthylène, perchloréthylène, trichloro-1,1,1 éthane.
Évolution des utilisations :
En 30 ans (1974-2004), la consommation européenne de solvants chlorés est passée de 920 000 à 220 000 t/an.
La consommation de trichloréthylène comme solvant était, dans l’Union européenne de 184 000 t en 1984. Cette utilisation représentait 75 % de la consommation. En 2006, elle a chuté à 25 000 t et, en 2010, à 10 000 t.
Dégraissage des métaux :
L’interdiction du trichloro-1,1,1 éthane s’est traduite par le développement d’autres moyens de dégraissage à l’aide de lessives en milieu aqueux ou d’hydrocarbures (par exemple du type White-spirit). Le trichloro-1,1,1 éthane avait, en partie, remplacé le trichloréthylène, toxique (en 2002, il était passé de la catégorie 3 des substances cancérogènes à la catégorie 2 « peut causer le cancer » avec une phrase de risque R45 et en 2012, à la catégorie 1B « substance que l’on sait être cancérogène pour l’homme »).
L’interdiction du trichloro-1,1,1 éthane se traduit, dans le cas de dégraissages méticuleux de pièces pour lesquelles les produits lessiviels ne conviennent pas, par le retour à l’emploi du trichloréthylène. Au Japon, le trichloro-1,1,1 éthane est remplacé par le chlorure de méthylène.
L’utilisation de machines de dégraissage fermées permet de diminuer, dans ce secteur, la consommation de trichloréthylène et les rejets dans l’atmosphère. Les consommations sont ainsi passées de 1 à 2 kg/h à moins de 100 g/h.
Le trichloréthylène est, dans l’Union européenne, interdit à la vente aux particuliers et est réservé à un emploi industriel.
Nettoyage à sec : voir le produit perchloréthylène.
Les solvants chlorés peuvent absorber couramment 30 % et jusqu’à 50 % de leur masse en impuretés. Jusqu’à 40 % en masse d’impuretés, la régénération est possible, au-delà, la destruction, par incinération, est pratiquée.
Régénération et recyclage : la régénération revient moins cher que l’incinération. Elle est effectuée par distillation, évaporation sous vide ou par entraînement à la vapeur. Environ 70 % du solvant est recyclé.
Par ailleurs, le recyclage des solvants utilisés comme intermédiaires de fabrication de produits chimiques, est effectué de façon interne par les sociétés chimiques (par exemple, Inovyn recycle des résidus chlorés pour fabriquer du perchloréthylène et du tétrachlorure de carbone, voir plus haut).
En France, les principales sociétés de régénération de solvants chlorés ou non sont regroupées au sein du Syres :
Incinération : elle est réalisée, souvent à haute température, dans des fours dédiés ou dans des fours de cimenteries. L’incinération produit HCl qui est récupéré.
Les solvants chlorés sont traités dans des unités qui incinèrent également d’autres résidus chlorés ou non. Au total, l’incinération concerne, en France, 2 millions de t/an de déchets. Une partie de ces déchets (250 000 t/an) sont incinérés dans des cimenteries.
Voir pour chaque produit : chlorure de méthyle, chlorure de méthylène, chloroforme, tétrachlorure de carbone, trichloréthylène, perchloréthylène, trichloro-1,1,1 éthane.