Engrais azotés 2023

L'élément azote est l'un des constituants des acides aminés et des protéines ainsi que de la chlorophylle qui contrôle la photosynthèse.

Les plantes doivent s'alimenter en azote à partir du sol car le <u>diazote</u> atmosphérique n'est pas, en général, assimilé directement par les plantes (sauf par les légumineuses). L'azote présent dans les sols sous forme d'ions nitrate (NO₃⁻) est directement assimilable (effet rapide) mais il est facilement entraîné, par les eaux de pluie, par lessivage. Par contre l'azote sous forme d'ions ammonium (NH₄⁺) qui se lient électrostatiquement aux argiles du sol, chargées négativement, est fixé dans le sol. Pour être assimilable par les plantes (sauf pour le riz dont la plante peut assimiler directement l'ion ammonium) l'ion ammonium doit être préalablement oxydé en ion NO₃⁻ par des bactéries (nitrosomas, nitrobacter) contenues dans le sol, en présence du <u>dioxygène</u> de l'air (effet retard).

Dans les plantes, l'ion nitrate est transféré aux feuilles où, en présence de nitrate réductase, il est réduit en ion ammonium et métabolisé en ion amide NH₂⁻, qui conduit à la formation des acides aminés.

L'humus a une teneur de 5 % en azote organique en grande partie non assimilable. Chaque année, 1 à 2 % de cet azote (soit 40 à 80 kg de N/ha/an) passe à l'état NO₃⁻, c'est la minéralisation. Une partie du NO₃⁻ présent dans l'humus (soit environ 30 kg de N/ha/an) est transformé par des microbes anaérobies en NO₂⁻ et N₂ (c'est la dénitrification).

Les besoins en N, par hectare, pour une production de blé de 70 quintaux sont, en moyenne, de 250 kg. Seuls, 210 kg sont consommés, car il y a, en particulier, 20 kg de dénitrification. Sur cette consommation, 155 kg proviennent des engrais, 65 kg d'azote organique, 30 kg d'apports naturels (pluies...).

Fixation du diazote de l'air par les plantes : d'après La Recherche, n°199, mai 1988.

Quelques plantes (fougère Azolla en Asie, légumineuse Sesbania Rostrata en Afrique) en association avec des micro-organismes (bactéries du genre Rhizobium) pour S. Rostrata peuvent fixer le diazote de l'air et être utilisées comme « engrais vert » pour la culture du riz. A l'échelle mondiale on estime que 75 millions de t de N_2 sont ainsi accumulées soit l'équivalent de 160 millions de t d'engrais chimiques. S. Rostrata peut fixer 200 à 300 kg de N_2 par ha en 50 jours et permet de faire passer le rendement en riz de 2 à 4 t/ha ce qui équivaut à un apport d'engrais chimiques de 60 à 80 kg.

Le trèfle fixe 150 kg de N/hectare/an, la luzerne 180 kg de N/ha/an.

Matières premières

Le <u>gaz naturel</u> fournit, en 2015, dans le monde, 69 % de l'<u>ammoniac</u> nécessaire à la fabrication des engrais azotés. Le <u>charbon</u> et le gaz de cokerie comptent pour 29 % (à 95 % en Chine), le fuel ou le naphta pour 2 %.

Fabrication industrielle

Elle nécessite la production d'ammoniac (voir les chapitres consacrés au <u>dihydrogène</u> et à l'<u>ammoniac</u>) lui même obtenu par production de dihydrogène obtenu principalement par reformage à la vapeur d'eau du méthane du gaz naturel puis conversion du monoxyde de carbone selon les équations suivantes :

$$CH_4 + H_2O = CO + 3 H_2$$

 $CO + H_2O = CO_2 + H_2$

Le <u>dioxyde de carbone</u> est récupéré si de l'urée est fabriquée.

L'ammoniac est ensuite obtenu par synthèse catalytique avec un catalyseur à base de fer, le <u>diazote</u> (de l'air) étant introduit lors de la fabrication du dihydrogène. Environ 82 % de l'ammoniac produit dans le monde est utilisé pour la fabrication d'engrais.

Composés chimiques fabriqués

Les produits suivants sont utilisés comme engrais azotés :

Ammoniac: **NH**₃. Il est employé sous forme de gaz liquéfié sous pression injecté dans le sol. Cette utilisation directe de l'ammoniac est surtout pratiquée aux États-Unis où elle représente, en 2020, 25 % de la fertilisation azotée. Elle n'est pas employée en France.

Urée : CO(NH₂)₂. Elle est obtenue par action du <u>dioxyde de carbone</u> issu du reformage, sur l'<u>ammoniac</u>, sous pression (140 à 250 bar), à 190°C (environ 35 % l'ammoniac produit dans le monde est utilisé pour fabriquer de l'urée). Il se forme du carbamate d'ammonium, NH₂-CO₂-NH₄, qui est déshydraté en urée. Les unités de production ont des capacités de 1 000 à 2 000 t/jour. C'est l'engrais azoté le plus riche en N avec une teneur de 46 %. Son action a lieu par hydrolyse lente et formation d'ammoniac selon l'équation suivante :

$$CO(NH_2)_2 + 2 H_2O = 2 NH_3 + CO_2 + H_2O$$

En France, l'urée est utilisée (surtout dans le Sud-Ouest et en Alsace, régions productrices de maïs) seule ou en solutions 50/50 avec NH₄NO₃. C'est le principal engrais azoté utilisé dans le monde. Elle convient aux pays tropicaux (les ammonitrates sont trop solubles) en particulier pour la culture du riz mais aussi aux régions froides ou tempérées, sauf dans les sols sablonneux ou très calcaires. 90 % de l'urée est destinée à la production d'engrais. Les 10 % restants sont utilisés pour fabriquer des colles urée-<u>formol</u>, de la mélamine, des dérivés isocyanuriques, dans l'alimentation animale, l'extraction des paraffines...

La production mondiale est, en 2022, comptée en N, de 84,6 millions de t. Elle fait l'objet d'un important commerce international, avec 24,6 millions de t de N, en 2022.

Nitrate d'ammonium (dénommé ammonitrate) : NH4NO₃. Il est préparé, à 160°C, sous 3 bar, par neutralisation de l'<u>acide nitrique</u> par l'<u>ammoniac</u>. L'acide nitrique est lui-même préparé par oxydation catalytique de l'ammoniac sur grilles de <u>platine</u> (voir le chapitre consacré à <u>HNO</u>₃). Les unités de production ont des capacités de 1 500 à 3 000 t/jour.

Le titre en N (35 % maximum) varie à l'aide d'une charge, en général <u>calcaire</u>. Du nitrate de magnésium (1,6 %) est ajouté pour stabiliser NH₄NO₃ sous sa forme orthorhombique IV

(changement de forme à 32°C) et éviter la désagrégation des granulés, puis la prise en masse qui augmente les risques de détonation.

Le nitrate d'ammonium est utilisé dans la fabrication d'engrais sous forme d'engrais NP, NPK, de solutions urée-nitrate et surtout solide comme engrais simple, dénommé ammonitrate. C'est l'engrais azoté le plus utilisé en France, où il représente, en 2017-18, 36 % de la fertilisation azotée.

En 2022, la production mondiale, comptée en N, est de 15,4 millions de t. Une partie de la production est employée en utilisation directe comme engrais, une autre partie pour préparer des solutions d'engrais et enfin une dernière partie dans des applications industrielles, en dehors de l'industrie de engrais, comme, par exemple, l'industrie de explosifs. Le commerce international a porté sur 2,3 millions de t, comptées en N.

Sulfate d'ammonium : (NH4)2SO4. C'est un sous-produit des fabrications de caprolactame, acrylonitrile, <u>coke</u> sidérurgique mais il est également synthétisé à partir d'<u>ammoniac</u> et d'<u>acide sulfurique</u>. En 2022, la production mondiale est de 6,3 millions de t comptées en N et le commerce international de 3,6 millions de t, comptées en N.

Phosphates d'ammonium (engrais binaire NP) : diammonique (DAP) : (NH₄)₂HPO₄ et monoammonique (MAP) : NH₄H₂PO₄. Ils sont obtenus par neutralisation de NH₃ par <u>H₃PO₄</u> (voir les <u>engrais phosphatés</u>). La production mondiale de phosphate diammonique est, en 2020, de 6,4 millions de t comptées en N, celle de phosphate monoammonique de 3,6 millions de t comptées en N.

Divers : nitrate de sodium naturel du Chili, cyanamide calcique (CaCN₂), nitrate de potassium (engrais binaire NK, par attaque à l'<u>acide nitrique</u> de <u>KCl</u>), chlorure d'ammonium (utilisé surtout en riziculture au Japon et en Inde), hydrogénocarbonate d'ammonium (utilisé en Chine), nitrate de calcium et d'ammonium.

Une partie de la production d'engrais azotés est commercialisée sous forme de solutions urée – nitrate d'ammonium.

Évolution de la production d'engrais azotés au cours des XIX et XX^{ème} siècle.

en milliers de t de N

Années	Nitrate du Chili	Guano	Sulfate d'ammonium sous produit de la distillation du charbon	-	Ammoniac synthétique	Total
1850	5	_	0	0	0	5
1860	10	70	0	0	0	80
1880	50	30	0	0	0	80
1900	220	20	120	0	0	360
1920	410	10	290	70	150	950
1940	200	10	450	290	2 150	3 100
1960	200	_	950	300	9 540	10 990
1980	90	_	970	250	59 290	60 600
2000	120	_	370	80	85 130	85 700

Source: EFMA

Le nitrate de sodium du Chili est exploité depuis 1804 dans le désert d'Atacama situé initialement dans 3 pays : Chili, Pérou et Bolivie. Il contient de 1 à 5 % de N. Il est extrait par lixiviation à l'eau chaude. Après la guerre du salpêtre (1879-1884), le Chili a annexé le gisement.

Le guano, formé par les déjections d'oiseaux, s'est accumulé (jusqu'à 60 m d'épaisseur) par exemple sur un ensemble d'îles au large des côtes péruviennes. Sa teneur est de 14 % de N et 14 % de P₂O₅.

Le sulfate d'ammonium était initialement produit lors de la fabrication du <u>gaz manufacturé</u> (ou gaz à l'eau) utilisé comme gaz de ville ou d'éclairage. Ce gaz contient de 0,7 à 1,5 % d'ammoniac qui est précipitée en sulfate d'ammonium. Actuellement, il est récupéré lors de l'élaboration du <u>coke</u>.

La cyanamide calcique est fabriquée par réaction du carbure de calcium avec le <u>diazote</u> de l'air, vers 1100°C, selon l'équation suivante :

$$CaC_2 + N_2 = Ca(CN)_2 + C$$

Productions

Dans le monde, en 2022 : 118,084 millions de t de N.

en milliers de t de N

Chine	25 635	Indonésie	3 964
Inde	15 738	Égypte	3 606
États-Unis	13 816	Pakistan	3 507
Russie	11 921	Canada	3 400
Arabie Saoudite	4 758	Qatar	2 591

Source: FAO

La production de l'Union européenne, en 2022, est de 8,641 millions de t de N.

Principaux pays exportateurs : en 2022, sur un total de 43,864 millions de t de N dont 6,962 millions de t de N pour l'Union européenne.

en milliers de t de N

Russie	7 210	Égypte	1 386
Chine	5 233	Pays Bas	1 286
Qatar	2 690	Belgique	1 119
Arabie Saoudite	2 587	Malaisie	958
États-Unis	2 455	Lituanie	500

Source: FAO

Principaux pays importateurs : en 2022, sur un total de 45,036 millions de t de N dont 10,312 millions de t de N pour l'Union européenne.

en milliers de t de N

Inde	6 510	Turquie	1 396
Brésil	6 126	Thaïlande	1 127
États-Unis	3 628	Allemagne	1 100
France	1 975	Argentine	749
Australie	1 673	Espagne	672

Source: FAO

Situation française

En t de N.

Production, en 2019 : 512 493 t de N.

Commerce extérieur : en 2023, en t de N.

Ammonitrates sous toutes formes y compris en présence de carbonate de calcium, hors solutions avec l'urée :

- Exportations : 118 881 t vers l'Allemagne à 27 %, le Royaume Uni à 24 %, la Suède à 13 %, l'Irlande à 8 %, le Danemark à 5 %.
- Importations : 334 733 t de Belgique à 68 %, d'Espagne à 10 %, des Pays Bas à 7 %, de Lituanie à 5 %.

Sulfate d'ammonium:

- Exportations : 11 134 t vers l'Espagne à 35 %, l'Allemagne à 26 %, la Belgique à 18 %, la Pologne à 11 %, l'Algérie à 7 %.
- Importations : 104 720 t des Pays Bas à 39 %, de Belgique à 32 %, d'Espagne à 9 %, de Chine à 8 %, d'Allemagne à 7 %.

Urée sous toutes formes, hors solutions avec le nitrate d'ammonium :

- Exportations : 89 163 t vers l'Espagne à 45 %, le Royaume Uni à 28 %, l'Italie à 11 %, la Belgique à 4 %.
- Importations : 685 504 t d'Égypte à 31 %, d'Algérie à 19 %, de Russie à 15 %, de Belgique à 9 %, d'Allemagne à 7 %.

Solutions urée – nitrate d'ammonium :

- Exportations : 608 t vers la Suisse à 44 %, la Belgique à 25 %, l'Allemagne à 17 %, l'Ukraine à 11 % .
- Importations : 561 356 t des États-Unis à 42 %, des Pays Bas à 18 %, de Trinidad et Tobago à 13 %, de Russie à 13 %, de Lituanie à 7 %.

Consommation, en 2020-21 : 1,766 million de t de N dont :

- Simples: 1 577 milliers de t de N (5 375 milliers de t de produit).
- NK et NPK: 137 milliers de t de N (988 milliers de t de produits).
- DAP-MAP : 52 milliers de t de N (288 milliers de t de produits).

Consommation à l'hectare : 77 kg de N, en 2019-20.

Utilisations

Consommations par produits:

en milliers de t de N

Engrais	Monde		Chine,	Indo on 2010	Étata IInia an 2010	France,
Engrais	1973-74	2019	en 2019	mae, en 2019	États-Unis, en 2019	en 2019
Urée	8 330	52 259	8 490	15 429	2 839	382

Ammonitrate	7 300	6 505	0	0	206	557
Phosphates d'ammonium	1 023	7 624	1 621	1 816	689	58
Ammoniac	3 580	3 603	0	0	2 848	0
Solutions	2 120	6 210	4	0	3 064	628
Sulfate d'ammonium	2 760	3 896	62	138	351	9
Ternaires NPK	6 100	18 100	12 499	634	743	84
Total	39 220	107 550	24 109	19 101	11 729	2 126

Source: IFA

Consommation par pays : en 2022. Monde : 108,058 millions de t de N, Union européenne : 7,919 millions de t de N.

en milliers de t de N

Chine	24 562	Canada	2 751
Inde	20 206	Russie	2 177
États-Unis	11 426	Vietnam	1 762
Brésil	6 775	France	1 734
Pakistan	3 667	Turquie	1 579
Indonésie	2 985	Thaïlande	1 152

Source: FAO

Problèmes

Sécurité : le nitrate d'ammonium est un composé qui dans certaines conditions peut exploser. En effet, le mélange de NH4NO3 avec 6 % de fuel est l'explosif industriel le plus utilisé, l'amorçage étant réalisé avec de la dynamite. Par ailleurs, au-dessus de 195°C, NH4NO3 risque de se décomposer avec explosion.

- Le 21 septembre 1921, dans l'usine BASF d'Oppau, en Allemagne, l'explosion de 5 400 t de sel double NH4NO₃-(NH₄)₂SO₄ a fait de 500 à 600 morts.
- Le 16 avril 1947, l'explosion de 2 bateaux à Texas City a fait 561 morts puis, plus tard, d'un bateau à Brest, 22 morts : les granulés de NH₄NO₃ étaient enrobés de 1 % de cire combustible.
- Du nitrate d'ammonium a été utilisé lors de l'attentat d'Oklahoma City, aux États-Unis, le 19 avril 1995 qui a fait 167 morts.
- Le 21 septembre 2001, à 10h17, 300 à 400 t de nitrate d'ammonium ont explosé à l'usine AZF de Toulouse entraînant la destruction de l'usine, la mort de 30 personnes (22 dans l'usine et 8 à l'extérieur) et plus de 2 000 blessés.
- Le 4 août 2020, explosion dans le port de Beyrouth de 2 750 t de nitrate d'ammonium avec plus de 200 morts.

Économiques : le prix de revient des engrais azotés est lié au coût du <u>gaz naturel</u> (50 % du prix de revient des ammonitrates). Les pays producteurs de gaz naturel (Pays du Golfe, Russie) ont développé une industrie de l'ammoniac extrêmement concurrentielle.

Écologiques : les ions nitrates peuvent entraîner une <u>pollution des eaux</u>, voir le chapitre consacré à l'eau.