AMMONIAC 2019

Matières premières

Pour produire 1 t de NH₃ il faut 658 m³ de <u>diazote</u> et 1 974 m³ de <u>dihydrogène</u>, mesurés à 1 bar et 25 °C. Le diazote provient de l'air. Le dihydrogène est obtenu principalement par vaporeformage du <u>gaz naturel</u> (composé de méthane, CH₄) mais aussi, particulièrement en Chine, à partir du <u>charbon</u>, lors de l'élaboration du <u>coke</u> ou par gazéification en présence d'eau.

En 2015, le <u>gaz naturel</u> est la matière première adoptée pour 69 % des capacités mondiales de production de NH₃, le <u>charbon</u> et le gaz de cokerie pour 29 % (à 95 % en Chine), le fuel ou le naphta pour 2 %.

En Chine, en 2016, le charbon représente 82 % des matières premières utilisées.

Dans l'Union européenne, en 2012, la part du gaz naturel est de 90 %.

Toute la production française d'ammoniac est effectuée à partir de gaz naturel.

Le gaz naturel représente, en 2013, dans l'Union européenne, de 80 à 88 % des coûts de production de l'ammoniac. Il faut 0,6 kg de gaz naturel pour produire 1 kg d'ammoniac.

En 2019, le gaz naturel représente 35 % des coûts de production du principal producteur mondial CF Industries.

Fabrication industrielle

Principe : selon le procédé Haber-Bosch dont la première industrialisation a eu lieu, en 1913, par BASF, à Oppau, en Allemagne.

En général, en dehors de la Chine, l'élaboration se fait directement à partir du gaz naturel qui donne H2 (voir le chapitre consacré à ce gaz). L'air (source de diazote) est introduit après le vaporeformage et avant la conversion. A ce stade, le gaz de synthèse contient de 5 à 11 % de méthane non transformé. Un reformage secondaire (ou post combustion) permet d'éliminer le dioxygène de l'air par combustion avec le méthane restant.

La synthèse de NH₃ a lieu à haute pression (8 à 30 MPa), 350 à 500°C, en présence de catalyseurs contenant du fer. Le rendement est faible (environ 20 %), ce qui nécessite un recyclage du gaz non converti après récupération de NH₃ par refroidissement.

$$N_2 + 3 H_2 = 2 NH_3$$
 $\Delta_r H^{\circ}_{298} = -92.2 \text{ kJ/mole}.$

Les nouvelles unités de production peuvent donner 3 300 t NH₃/jour et atteindre jusqu'à 4 250 t/jour. La consommation moyenne d'énergie est de 34,7 GJ/t dans l'Union européenne, elle est de 27 GJ/t pour les nouvelles unités de production.

Catalyseur : exemple de composition, en % en masse, avant réduction lors de la production de NH₃. Dans le réacteur, l'oxyde de fer est réduit en <u>fer</u>.

Fe₃O₄ Al₂O₃ CaO K₂O MgO SiO₂ 94,3 % 2,3 % 1,7 % 0,8 % 0,5 % 0,4 %

Un four de production de NH₃ contient 100 t de catalyseur, sous forme de grains de 1,5 à 20 mm, avec une durée de vie qui peut atteindre 10 ans.

Dans les réacteurs fonctionnant à pression relativement basse (8 à 10 MPa), les catalyseurs contiennent environ 5 % d'oxyde de cobalt.

Un catalyseur à base de rubidium et de ruthénium est utilisé dans une unité de production de 150 000 t/an à Kitimat en Colombie Britannique (Canada).

Exemples d'unités de production :

- La plus grande usine, au monde, est celle exploitée par <u>CF Industries</u>, aux État-Unis en Louisiane, à Donaldsonville, avec une capacité de 3,933 millions de t/an de NH₃. Elle comprend 6 unités de production d'ammoniac, 5 d'urée avec une capacité de production de 2,390 millions de t/an, 4 d'acide nitrique, 3 de solutions urée/nitrate d'ammonium à 32 % de N avec une capacité de production de 2,952 millions de t/an. La capacité de stockage est de 127 000 t d'ammoniac.
- La plus grande usine européenne de production d'ammoniac, exploitée par <u>Yara</u>, est située à Sluiskil, aux Pays-Bas. Les 3 unités de production possèdent une capacité de 1,9 million de t/an. L'ammoniac est utilisé dans 2 unités de production d'acide nitrique avec une capacité de production de 1,4 million de t/an, dans 2 unités de productions d'urée avec une capacité de production de 1,3 million de t/an et des unités de production de nitrates avec une capacité de production de 1,9 million de t/an.

Stockage : NH₃ est obtenu anhydre, liquide, à -33°C, et stocké à cette température, à la pression atmosphérique. Les réservoirs contiennent jusqu'à 36 000 t de NH₃. CF Industrie possède une capacité de stockage de 1,315 million de t.

Coproduit : du <u>dioxyde de carbone</u> (2,1 t/t d'ammoniac). Celui-ci peut être utilisé pour produire de l'<u>urée</u>, vendu aux distributeurs de gaz industriels, ou rejeté dans l'atmosphère. La production d'ammoniac génère au niveau mondial 1 % des émissions de gaz à effet de serre. Les émissions sont comprises entre 1,6 t de CO₂/t de NH₃ à partir du gaz naturel et 3,8 t de CO₂/t de NH₃ à partir de charbon.

Productions

En 2019. Monde : 182 millions t de NH₃ ou 150 millions de t exprimé en N. Union européenne : 14,7 millions t de NH₃.

en millions t de NH3

Chine	49	Arabie Saoudite	5,2
Russie	18	Égypte	5,0
États-Unis	17	Trinidad et Tobago	4,9
Inde	15	Canada	4,6
Indonésie	6,1	Iran	4,1

Source : USGS

En 2018, les capacités mondiales de production sont de 234 millions de t/an d'ammoniac avec 467 usines.

La Chine, en 2012, compte 394 usines de production d'ammoniac.

Aux États-Unis, en 2019, 16 sociétés exploitent 35 usines de production situées pour 60 % des capacités de production, sur un total de 20,6 millions de t/an, en Louisiane, Oklahoma et Texas. Les principaux producteurs sont : <u>CF Industries Holdings</u> avec 41,8 % des capacités de production,

<u>Nutrien</u> avec 14,6 % des capacités de production, <u>Koch Nitrogen</u> avec 9,7 % des capacités de production.

Dans l'Union européenne, en 2013, avec une capacité de production de 20,613 millions de t/an de NH₃, il y a 42 usines de production d'ammoniac.

Capacités de productions et nombre d'usines, en 2013, et productions en 2019, en milliers de t NH₃, soit 14 658.

	Capacité, en kt/an	Nombre d'usines	Production, en kt		Capacité, en kt/an	Nombre d'usines	Production, en kt
Allemagne	3 438	5	2 932	Bulgarie	1 118	3	*
Pologne	3 210	5	2 447	Royaume Uni	1 100	3	911, en 2017
Pays Bas	2 717	2	*	Belgique	1 020	2	*
Roumanie	2 176	6	620, en 2015	Espagne	609	3	445
France	1 495	4	622	Slovaquie	429	1	508
Lituanie	1 118	1	1 050	Croatie			478

Sources: Eurostat et Centre for European Policy Studies

Par ailleurs, en 2013, il y a 2 usines en Hongrie, 1 usine en Italie, Autriche, République tchèque, Estonie et Grèce.

Principaux producteurs: hors producteurs chinois, en 2019.

en millions de t/an de capacité de production d'ammoniac

<u>CF Industries</u> (États-Unis)	9,88	Ostchem (Ukraine)	5,18
Yara (Norvège)	8,6	EuroChem (Russie)	4,20
PT Pupuk (Indonésie)	7,09	TogliattiAzot (Russie)	3,50
Nutrien (Canada)	7,06	Sabic (Arabie Saoudite)	3,50
OCI (Pays Bas)	6,87	Koch (États-Unis)	3,29
		Sources : rapports des sociét	és

- <u>CF Industries</u>, possède des usines de production aux États-Unis, en Louisiane à Donaldsonville, avec une capacité de 3,933 millions de t/an de NH₃, dans le Mississippi à Yazoo City, avec 517 000 t/an, dans l'Oklahoma à Verdigris avec 75,3 % de 1,097 million de t/an et Woodward avec 435 000 t/an, dans l'Iowa à Port Neal avec 1,115 million de t/an, au Canada, dans l'Alberta à Medecine Hat avec 1,115 million de t/an et dans l'Ontario à Courtright avec 453 000 t/an, au Royaume Uni, à Billingham avec 540 000 t/an et Ince avec 345 000 t/an et détient à Trinidad et Tobago une participation de 50 % de Point Lisas Nitrogen Limited avec 327 000 t/an. En 2019, la production totale d'ammoniac de CF Industries a été de 9,293 millions de t dont 6,104 millions de t ont été transformées en divers produits azotés (urée, ammonitrate...).
- Yara, possède, en propre, des unités de production à Porsgrunn en Norvège avec 500 000 t/an, à Brunsbüttel en Allemagne avec 750 000 t/an, à Sluiskil aux Pays-Bas avec 1,9 million de t/an, au Havre en France avec 400 000 t/an, à Ferrara en Italie avec 600 000 t/an, à Tertre en Belgique avec 400 000 t/an, à Hull au Royaume Uni avec 300 000 t/an, à Belle Plaine au Canada avec 700 000 t/an, à Cartagène en Colombie avec 117 000 t/an, à Babrala en Inde avec 700 000 t/an, à Cubatão au Brésil avec 200 000 t/an et à

^{*:} les productions pour ces pays sont confidentielles.

Pilbara en Australie avec 800 000 t/an, ainsi que des participations dans des unités à Freeport aux États-Unis avec 68 % de participation et 600 000 t/an, à Trinidad et Tobago avec 49 % de participation et 400 000 t/an, en Libye avec 50 % de Lifeco et 200 000 t/an. En 2020, au Qatar, la participation de 25 % de Yara dans Qafco a été vendue. En 2019, la production de Yara a été de 8,479 millions de t d'ammoniac dont 5,952 millions de t ont été transformées en divers produits azotés.

- En 2018, la production de PT Pupuk, en Indonésie, a été de 5,806 millions de t.
- Nutrien issu, de la fusion, effective depuis le 1^{er} janvier 2018, entre PotashCorp (Potash Corporation of Saskatchewan, Canada) et Agrium possède aux États-Unis des unités de production à Augusta, en Géorgie, avec une capacité de production de 0,800 million t/an et une production, en 2019, de 0,70 million de t, à Geismar, en Louisiane, avec une capacité de production de 0,500 million t/an et une production, en 2019, de 0,54 million de t, à Lima, dans l'Ohio, avec une capacité de production de 0,750 million t/an et une production, en 2019, de 0,68 million de t, à Borger, au Texas, avec une capacité de production de 0,451 million de t/an et une production, en 2019, de 0,37 million de t, au Canada, dans l'Alberta, des unités de production à Redwater avec une capacité de production de 0,923 million de t/an et une production, en 2019, de 0,76 million de t, à Carseland avec une capacité de production de 0,523 million t/an et une production, en 2019, de 0,45 million de t, à Joffre avec une capacité de production de 0,474 million t/an et une production, en 2019, de 0,42 million de t, à Fort Saskatchewan avec une capacité de production de 0,5 million t/an t une production, en 2019, de 0,48 million de t, et à Trinidad et Tobago, à Point Lisa, avec une capacité de production de 2,2 millions t/an et une production, en 2019, de 1,76 million de t. La production totale, en 2019, a été de 6,16 millions de t. Par ailleurs Nutrien possède en Égypte, à Damiette, 26 % de la société Mopco et une
 - Par ailleurs Nutrien possède en Égypte, à Damiette, 26 % de la société <u>Mopco</u> et une capacité de 0,312 million de t/an et en Argentine, à Bahia Blanca, 50 % de la société <u>Profertil</u> et une capacité en propre de 0,404 million de t/an.
- OCI produit de l'ammoniac aux Pays Bas, à Geleen avec une capacité de production de 1,184 million de t/an, en Algérie, à Arzew avec 51 % de la société Sorfert et 1,606 million de t/an, en Égypte, à Ain Sokhna, près de Suez avec 1,506 million de t/an, aux États-Unis, à Wever dans l'Iowa avec 914 000 t/an, et à Beaumont, au Texas avec 354 000 t/an, aux Émirats Arabes Unis avec 1,205 million de t/an.

Transport: l'ammoniac est principalement transformé sur place, à 88 %, sinon il est transporté liquide à -33°C en camions citernes, navires de 35 000 t de capacité ou pipeline (5 090 km aux États-Unis, 2 000 km en Russie et Ukraine entre Togliatti et Odessa). Le principal port d'exportation, celui de l'ammoniac produit en Russie et Ukraine, avec 2,6 millions de t/an, est Yuzhnyy situé sur les côtes de la Mer Noire.

Commerce mondial : il a porté, en 2019, sur 20,025 millions de t de NH₃, sous forme anhydre.

Principaux pays exportateurs:

en milliers de t de NH3

Arabie Saoudite 4 863 Canada 942 Russie 4 648 Ukraine 586 Trinidad et Tobago 3 922 Qatar 577 Indonésie 1 773 Malaisie 492 Algérie

1 210 Pays Bas 434

Source: ITC

Les exportations de l'Arabie Saoudite sont destinées à 51 % à l'Inde, 18 % au Brésil, 6 % au Kenya.

Principaux pays importateurs:

on	mil	liorc	40	+	d۸	NH_3
en	шш	ners	ue	ι	ue	INTIS

Inde	2 757	Chine	1 055
États-Unis	2 459	Turquie	1 024
Maroc	1 507	Ukraine	862
Corée du Sud	1 378	Taipei chinois	644
Belgique	1 186	Allemagne	608

Source: ITC

Les importations de l'Inde proviennent à 27 % d'Arabie Saoudite, 21 % du Qatar, 13 % d'Indonésie, 13 % d'Égypte, 10 % d'Ukraine.

Par ailleurs, en 2019, le commerce international de l'ammoniac en solution aqueuse a porté sur 1,652 million de t.

Situation française

Production : 622 212 t, en 2019, avec une capacité de production de 1,495 million de t.

Usines : en t de NH₃ de capacités annuelles.

Le 1^{er} juillet 2013, la société GPN, filiale de Total, a été acquise par Borealis, société autrichienne détenue à 64 % par <u>Mubadala</u>, société d'Abu Dhabi et 36 % par le groupe pétrolier autrichien <u>OMV</u>.

- Grandpuits (Borealis): 439 000 t/an.
- Grand Quevilly (Borealis): 400 000 t/an.
- Le Havre (Yara France): 400 000 t/an.
- Ottmarsheim (Borealis): 260 000 t/an.

Localisation des usines françaises de production d'ammoniac

Commerce extérieur : en 2019.

Les exportations étaient :

- pour l'ammoniac anhydre de 129 054 t à destination principalement de la Belgique à 27 %, l'Allemagne à 26 %, les Pays Bas à 15 %, l'Espagne à 12 %, le Portugal à 11 %, la Norvège à 6 %.
- pour les solutions aqueuses d'ammoniac de 18 902 t à destination principalement de la Suisse à 84 %, de la Belgique à 7 %.

Les importations s'élevaient :

• pour l'ammoniac anhydre à 578 221 t en provenance principalement d'Algérie à 34 %, d'Allemagne à 22 %, des Pays Bas à 16 %, du Royaume Uni à 12 %, de Trinidad et Tobago à 9 %.

• pour les solutions aqueuses d'ammoniac à 75 675 t en provenance principalement de Belgique à 37 %, des Pays Bas à 23 %, d'Algérie à 10 %.

Utilisations

Consommations : en 2019, en millions de t de NH₃. Monde : 182,5, Union européenne, en 2017 : 20,1. Répartition :

Asie de l'Est 36,1 % Europe de l'Ouest 7,7 % Asie du Sud 12,2 % Afrique 5,2 % 12,2 % Europe Centrale 2,9 % Amérique du Nord Europe de l'Est, Asie Centrale 11,9 % Amérique Latine 2,3 % Asie de l'Ouest 8,5 % Océanie 0.9 % Source: IFA

En 2019, la consommation des États-Unis est de 19,4 millions de t de NH₃.

Secteurs d'utilisation :

Les <u>engrais</u> représentent 82 % de la consommation mondiale d'ammoniac (voir ce chapitre). En 2016, dans le monde, l'ammoniac a été utilisé directement pour seulement 3,7 % de la fertilisation azotée, le reste a été transformé et utilisé sous forme d'urée pour 48,0 % de la fertilisation azotée, de phosphates d'ammonium pour 6,9 %, de nitrate d'ammonium pour 6,4 %, de sulfate d'ammonium pour 3,3 %.

Aux États-Unis, en 2019, 88 % de la consommation d'ammoniac est destinée à une utilisation sous forme d'engrais. Dans ce pays, compté en N contenu, en 2016, 25,9 % de la consommation d'engrais azotés est sous forme d'ammoniac anhydre, 26,0 % sous forme de solutions, 22,6 % d'urée, 2,4 % de sulfate d'ammonium, 2,3 % de nitrate d'ammonium.

En Europe, en 2017-18, les nitrates représentent 46 % de la fertilisation azotée, l'urée 22 %, les solutions 13 %.

Aux États-Unis, l'utilisation des engrais azotés est principalement réalisée directement avec de l'ammoniac (25,9 % de la fertilisation azotée) alors que dans d'autres régions, par exemple en Inde et en Chine, l'urée domine, avec respectivement 81 et 67 % de la fertilisation azotée ou, en Europe, le nitrate d'ammonium, avec 42 % de la fertilisation azotée.

Autres utilisations : plastiques et fibres (polyuréthane, résines urée-formol, nylon, acrylonitrile...), explosifs (NH₄NO₃).

Ces utilisations représentent 18 % de la consommation mondiale, à 77 % par la chimie, 17 % la fabrication d'explosifs, 5 % l'environnement.

- NH₃ est un intermédiaire dans la fabrication d'<u>acide nitrique</u>, d'<u>urée</u>, de <u>nitrate</u> <u>d'ammonium</u>, utilisés en grande partie dans les secteurs cités ci-dessus et principalement les engrais.
- Intervient, en étant recyclé, dans le procédé Solvay de fabrication du <u>carbonate de sodium</u>.
- Fluide réfrigérant : 45 t de NH₃ circulent dans 80 km de canalisations pour réfrigérer la piste de bobsleigh de La Plagne (73) construite pour les Jeux Olympiques d'hiver d'Albertville de 1992. Utilisé en remplacement des CFC.
- Utilisé pour éliminer l'aflatoxine (substance toxique) des sous-produits du pressage de l'huile d'arachide employés pour fabriquer des tourteaux pour l'alimentation animale.

Acidification des sols

En 2017, l'acidification due aux pluies provient à 62 % des émanations d'ammoniac, 30 % de celles des oxydes d'azote et 7,5 % de celles du <u>dioxyde de soufre</u>. En 1980, celle-ci était principalement due au dioxyde de soufre avec 54 %, puis à l'ammoniac et aux oxydes d'azote avec 23 % chaque. Entre ces deux dates on a assisté à une diminution régulière de la pollution par le dioxyde de soufre alors que celle due à l'ammoniac reste sensiblement constante.

En 2018, en France métropolitaine, les émissions d'ammoniac ont été de 594 000 t, dues, à 66 % aux déjections animales des élevages et 27 % aux apports d'engrais pour les cultures. En 1980, les émissions d'ammoniac étaient de 712 000 t.

A priori, il est surprenant que l'ammoniac joue un rôle, non négligeable, sur l'acidification due aux pluies. En effet le pK_a du couple NH_4^+/NH_3 est de 9,2 et en conséquence, l'ammoniac est une base faible. Lors de l'épandage d'engrais, en particulier d'urée qui libère de l'ammoniac lors de son hydrolyse, une partie de celui-ci est libérée dans l'atmosphère et dans un premier temps peut neutraliser l'acidité des pluies en formant des ions NH_4^+ lors de sa dissolution. Toutefois, la formation d'ion ammonium (NH_4^+) contenu dans les pluies et la présence de celui-ci lors d'épandage d'engrais le renfermant, par exemple les ammonitrates, se traduit, dans les sols, par une action de nitrification qui, à l'aide de bactéries contenues naturellement dans les sols, produit des ions nitrate mais aussi des ions H^+ , selon les réactions suivantes :

$$2 \text{ NH}_4^+ + 3 \text{ O}_2 = 2 \text{ NO}_2^- + 2 \text{ H}_2\text{O} + 4 \text{ H}^+$$

 $2 \text{ NO}_2^- + \text{ O}_2 = 2 \text{ NO}_3^-$